+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
News Article

Could UV light improve semiconductor integration?


NREL scientists suggest that application of UV illumination could improve the optical properties of semiconductor layers

Integrating different semiconductor materials into an epitaxial device structure offers additional degrees of freedom to select for optimal material properties in each layer. However, interfaces between materials with different valences (i.e. III-V, II-VI and IV semiconductors) can be difficult to form with high quality.

Now, a discovery by Kwangwook Park and Kirstin Alberi, at the US Energy Department's National Renewable Energy Laboratory (NREL), suggests that careful application of UV illumination may be used to improve the optical properties of these material layers.

Park and Alberi experimented with integrating a layer of zinc selenide (ZnSe) grown on top of a layer of GaAs using UV light to modify the interface between them. Their results are published in a paper 'Tailoring Heterovalent Interface Formation with Light' in Scientific Reports.

Using a 150-watt xenon lamp to illuminate the growth surface, Park and Alberi determined the mechanisms of light-stimulated interface formation by varying the light intensity and interface initiation conditions. They found the UV light altered the mixture of chemical bonds at the interface through photo-induced desorption of arsenic atoms on the GaAs surface, resulting in a greater percentage of bonds between gallium and selenium, which help to passivate the underlying GaAs layer. The illumination also allowed the ZnSe to be grown at lower temperatures to better regulate elemental intermixing at the interface.

"The real value of this work is that we now understand how light affects interface formation, which can guide researchers in integrating a variety of different semiconductors in the future," Park said.

The NREL scientists suggested careful application of UV illumination may be used to improve the optical properties of both layers.

The work was funded by DOE's Office of Science.

Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: