Loading...
News Article

Connecting the worlds of electronics and photonics

News

University of Twente researcher proposes using 'avalanche mode' silicon LEDs to efficiently bring light on-chip

Electronics and light don't go well together on a standard "˜CMOS' chip. But researcher Satadal Dutta of the University of Twente now succeeds in introducing a light connection into the heart of a semiconductor chip. In this way, two circuits can be isolated and still communicate. Or: the worlds of electronics and photonics are connected.

What is particularly attractive about Dutta's solution is that no special materials or manufacturing processes are needed: the light comes from silicon. The light source, detector and the light channel can be made using the technology that is used to make the electronic circuits. Fully optical circuits are available nowadays, but they use materials like InP and GaAs, which can't easily be combined with the CMOS chip processes used for semiconductor chips you'll find in today's smartphones, for example.

The alternative would be: make a LED light source out of silicon. And that's the problem: silicon only emits a tiny amount of infrared light, while a detector made out of silicon needs visible light. They are talking and listening at different wavelengths. Dutta therefore chooses a remarkable way out: connect the LED in reverse.

At low voltages, there's no current and light, but at a voltage that is high enough, there will be a small current that amplifies itself like an avalanche. In this "˜avalanche mode', the LED will transmit visible light. Using the same process, the light detector, as well as the light channel in-between can be made. Thanks to the special comb structure that Dutta designed for this, the light source gets more uniform and energy efficient.

An optical link on a chip is a good way to "˜galvanically' isolate two circuits from each other. This is often necessary in cases where one circuit is a low-voltage and low-current one, while the other is a high-power circuit. They should be connected, but not by conducting wires, for reasons of safety.

A classic transformer is an option then, but an optical connection is often used as well. Until now, this is a separate "˜optocoupler', which is large and has limited speed. Dutta's new solution is much more compact as an alternative: it total, it is just a few tens of microns and it offers the protection that's needed at higher bit rates. Compared to optical channels in full-optical circuits, the energy consumption is relatively high, as there is quite some scattering of light.

On the other hand: designing the electronics around the optical link in an efficient way, the amount of light needed for a successful connection, can be kept to a minimum.

All-optical circuits may become the "˜new electronics', predictions say. In the transition from electronic to optic circuits, hybrid circuits, like the one Dutta designed, could play an important role.

Satadal Dutta (1990, Barrackpore, India) did his PhD research in the Semiconductor Components group of Jurriaan Schmitz, together with the Integrated Circuit Design group of Bram Nauta. Dutta's thesis "˜Avalanche-mode silicon LEDs for monolithic optical coupling in CMOS technology' was supported financially by NWO-TTW and NXP Semiconductors.

SPONSOR MESSAGE

Secure Your Hydrogen Supply

A study supply of high-purity hydrogen is critical to semiconductor fabrication. Supply chain interruptions are challenging manufacturers, leading to production slowdowns and stoppages. On-site hydrogen generation offers a scalable alternative for new and existing fabs, freeing the operator from dependence on delivered gas.

Plant managers understand the critical role that hydrogen plays in semiconductor fabrication. That important job includes crystal growth, carrier gas, wafer annealing, and in the emerging Extreme UV Lithography (EUV) that will enable new generations of devices. As the vast need for semiconductors grows across all sectors of world economies, so does the need for high-purity hydrogen.

Take control with Nel on-site hydrogen generation.

Read more
Say hello to the heterogeneous revolution
Double heterostructure HEMTs for handsets
AlixLabs to collaborate with Linköping University
SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
x
Adblocker Detected
Please consider unblocking adverts on this website