How To Cut SiC Resistance By Two Thirds


Mitsubishi and University of Tokyo are first to quantify electron scattering mechanisms in SiC power devices to reduce energy consumption

Mitsubishi Electric and the University of Tokyo believe they are the first to quantify the impacts of three electron-scattering mechanisms for determining the resistance of SiC power semiconductor devices in power semiconductor modules.

They have found that resistance under the SiC interface can be reduced by two-thirds by suppressing electron scattering by the charges, a discovery that is expected to help reduce energy consumption in power equipment by lowering the resistance of SiC power semiconductors.

Going forward, Mitsubishi Electric will continue refining the design and specifications of its SiC MOSFET to further lower the resistance of SiC power semiconductor devices. This research achievement was initially announced at The International Electron Devices Meeting (IEDM2017) in San Francisco, California on December 4.

The impact that charges and atomic vibration have on electron scattering under the SiC interface was revealed to be dominant in Mitsubishi Electric’s analyses of fabricated devices.