News Article

Panasonic Develops Insulated-Gate GaN Power Transistor


Low-loss and high-speed switching accelerates the miniaturisation of equipment, and expands the GaN power transistor market

Panasonic has developed an insulated-gate GaN power transistor capable of continuous stable operation with no variation in its threshold voltage.

According to the company, this technology makes it possible to further increase the speed of GaN power transistors, enabling the miniaturisation of various electronic equipment.

Metal Insulator Semiconductor (MIS) type GaN power transistors are expected to be practical for next-generation power devices. Panasonic has been researching MIS gate structure as a future technology to further increase its operation speed. However, hysteresis occurs in conventional MIS type GaN power transistors, and high-speed switching operations with a high current and a high voltage had not yet been confirmed.

Now, the company has confirmed the continuous stable operation of MIS type GaN power transistors "” which are required for future ultrafast GaN power devices "” at a current of 20 A. With a significant increase in switching frequency, the miniaturisation of peripheral passive components becomes possible, says Panasonic, helping to reduce the size of power supplies for servers and base stations.

Panasonic's newly developed GaN power transistors have continuous stable operation at a maximum gate voltage of +10 V. They also operate at high current and voltages (drain current of 20 A and breakdown voltage of 730 V). High-speed switching features an OFF operation time of 1.9 ns and ON operation time of 4.1 ns.

Use of AlON gate insulator

The use of aluminum oxynitride (AlON) and the improvement of the insulator formation processes reduces electron traps within the insulator. This results in the stable threshold voltage, which enables continuous switching operation. By suppressing the hysteresis at gate voltages up to +10 V, the stable operation of power conversion equipment with Panasonic's MIS type GaN power transistors is expected to be realised.

Damage-free recessed gate structure

When introducing the recessed gate structure necessary for high-current operation, suppressing processing damages under the gate electrode was an issue. In this development, it was possible to suppress such processing damages by forming the outermost layer at high temperature following the formation of the recess. As a result, normally-off operation as well as the suppression of hysteresis was achieved.

Advanced GaN on Si technologies

Panasonic has been already mass-producing GaN power transistors called GIT. This new MIS type GaN power transistor was developed as a future technology to achieve higher-speed operation. By applying the fabrication process technologies acquired through the mass production of GITs on silicon (Si) substrates, high current as well as high breakdown voltage was achieved.

AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.



Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
Live Event