News Article

Deciphering 2D Disorder


US researchers quantify disorder in 2D materials to build better quantum, optical and electronic devices

The next wave of quantum, optical and electronic devices will be built from powerful two-dimensional materials. These materials can host room temperature qubits thereby enabling solid-state quantum technologies that are inherently more powerful than their classical counterparts.

But, they have a weakness. Unlike 3D systems, where almost all of the atoms are protected from the environment, 2D materials are exposed to the elements and susceptible to outside interactions from nearby materials or chemicals in the air. These interactions can actually change the atomic arrangement of the system.

If researchers are going to build new devices out of 2D materials, they need to understand where their atoms are and how tiny imperfections change their material and electronic properties.

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), the University of California, Los Angeles, and the Oak Ridge National Laboratory have combined experimental and theoretical techniques to measure atomic positions of all the atoms in a 2D transition metal dichalcogenide material and to calculate how the arrangement impacts the electronic properties of various regions of the system.

The research is published in Nature Materials.

The researchers found that materials were far from perfect, with atoms constantly misaligned, missing, or replaced with something else.

"While it makes sense that missing atoms and substituted atoms would change the local interactions and atomic configuration, it's not easy to answer the question by how much," said Christopher Ciccarino, a graduate student in the NarangLab at SEAS and co-author of the paper.

In collaboration with John Miao, professor at UCLA's Department of Physics and Astronomy, the researchers used a high-powered scanning electron microscope to measure the precise location of individual atoms and image atomic configurations at different angles relative to the 2D sheet.

After mapping out these positions, the research team analysed the lattice to see how imperfections play a role in its properties.

"Defects within the lattice created local disorder and irregularities," said Prineha Narang, Assistant Professor of Computational Materials Science at SEAS and co-author of the paper. "Even when zoomed out, the collection of vacancies and defects seemed to contribute to disorder. In particular, the 2D sheet wasn't really 2D, but instead had long range ripples in the third dimension."

"What we saw were these supposedly 2D sheets preferring to use this third dimension instead of remaining perfectly flat," said Ciccarino. "It is interesting then to think about how this would play into the observed properties of the material." The researchers found that local disorder can have significant effects on electronic and optical properties of 2D materials, including huge effects in how efficiently the material emitted light.

"Theorists usually have to make some assumptions about their system in order to compare with experiment," said Narang. "Here we were in a unique and exciting situation where we could directly intersect our methods with experimentally computed coordinates. Direct quantification of atomic disorder and interactions with environment could be an invaluable technique for fully understanding the nature and potential of these materials."

This research was funded by the Department of Defense Army Research Office MURI on Ab Initio Quantum Materials (AIQM) and the Betty and Gordon Moore Foundation. PN is a Moore Inventor Fellow. Scanning transmission electron microscopy experiments were conducted at the Center for Nanophase Materials Sciences, a Department of Energy Office of Science user facility at Oak Ridge National Laboratory.

'Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides' by Xuezeng Tian et al; Nature Materials (2020)

AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.



Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
Live Event