Info
Info
News Article

Cooking Up Efficient Perovskite Solar Cells

News

Additive DMSO favours crystal growth ... but only up to a certain point, says Helmholtz-Zentrum Berlin team

Solar cells made of crystalline silicon still account for the lion's share of roof installations and solar farms. But other technologies have long since become established such as those that convert sunlight into electrical energy through use of extremely thin layers of solar-cell material deposited upon a substrate.

The perovskite solar cells that Eva Unger and her team at the Helmholtz-Zentrum Berlin (HZB) are researching have efficiencies approaching those for cells made of crystalline silicon. But industrial-scale fabrication is still a long way off.

But now her team is taking the next step and developing scalable methods for coating larger surfaces.

At the Hybrid Silicon Perovskite Research, Integration & Novel Technologies (HySPRINT) Innovation Lab, an infrastructure for collaboration between HZB and industry, the team is concentrating on processes that have already proven their importance in industry to start with.

"We have experimented here with slot-die coating", she explains. In this process, the 'ink', as the thin liquid solution of perovskite precursor, solvent, and additive is known in the trade, flows from a slit-shaped nozzle and falls like a curtain onto the glass substrate being conveyed below that will later become a solar cell. After application, crystallisation begins and an ultra-thin layer of a semiconducting perovskite structure grows.

Unger, together with her team members doctoral student Jinzhao Li and Janardan Dagar, have now discovered that the exact amount of the organic solvent dimethyl sulphoxide (DMSO) in the material ink is critical for this process.

(The picture above shows the liquid solution of perovskite precursor, solvent, and additive flows from a slit-shaped nozzle onto the glass substrate being conveyed below.)

Unger uses it as an additive because it has an remarkable effect on the ink. "DMSO induces crystallisation nuclei for the perovskite", says the researcher. Crystallisation nuclei usually are tiny grains that help jump-start a crystal and promote its growth. "During X-ray diffraction experiments at BESSY II, we saw quite a big difference between inks with and without DMSO added", the physical chemist explains.

However, as her team has found out in many experiments, the amount added plays a decisive role here. More DMSO favours crystal growth - up to a certain point. If this is exceeded, other processes come into play and the resulting microstructure reduces the performance of the solar cells.

"It's like seasoning a soup", says Unger. "If you add too little, it remains bland. If you add too much, it won't taste good either. So you need to add just the right amount to make it best." In addition to the optimal composition, the HZB team has also thoroughly investigated the ageing processes and thus the storage life of the inks. "This is an aspect that has received little attention so far", Unger explains. "The age of a perovskite precursor ink can influence device performance. This is an important factor that must be considered when developing inks and processes."

'20.8 percent Slot‐Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO‐Content and Age of 2‐ME Based Precursor Inks' by Jinzhao Li et al; Advanced Energy Materials 25 January 2021



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event