Info
Info
News Article

Recycling Next-gen Solar Panels

News

Tossing worn-out solar panels into landfills may soon become electronics waste history

Designing a recycling strategy for a new, forthcoming generation of photovoltaic solar cells - made from metal halide perovskites, will add a stronger dose of environmental friendliness to a green industry, according to Cornell University-led research published June 24 in Nature Sustainability.

The paper shows substantial benefits to recycling perovskite solar panels, though they are still in the commercial development stage, said Fengqi You, the Roxanne E. and Michael J. Zak Professor in Energy Systems Engineering in the College of Engineering.

"When perovskite solar panels reach the end of their useful life, how do we deal with this kind of electronic waste?" said You, also a faculty fellow at the Cornell Atkinson Center for Sustainability. "It is a new class of materials. By properly recycling it, we could potentially reduce its already low carbon footprint.

"As scientists design solar cells, they look at performance," You said. "They seek to know energy conversion efficiency and stability, and often neglect designing for recycling."

Last year, You and his laboratory found that photovoltaic wafers in solar panels containing all-perovskite structures outperform photovoltaic cells made from state-of-the-art crystalline silicon, and the perovskite-silicon tandem - with cells stacked like pancakes to better absorb light - perform exceptionally well.

Perovskite photovoltaic wafers offer a faster return on the initial energy investment than silicon-based solar panels because all-perovskite solar cells consume less energy in the manufacturing process.

Recycling them enhances their sustainability, as the recycled perovskite solar cells could bring 72.6 percent lower primary energy consumption and a 71.2 percent reduction in carbon footprint, according to the paper, "Life Cycle Assessment of Recycling Strategies for Perovskite Photovoltaic Modules," co-authored by Xueyu Tian, a doctoral student at Cornell Systems Engineering, and Samuel D. Stranks of the University of Cambridge.

"Lowering the energy needed to produce the cells indicates a significant reduction of energy payback and greenhouse gas emissions," said Tian.

The best recycled perovskite cell architecture could see an energy payback time of about one month, with a carbon footprint as low as 13.4 grams of carbon dioxide equivalent output per kilowatt hour of electricity produced. Without recycling, the energy payback time and carbon footprint of new perovskite solar cells show a range of 70 days to 13 months, and 27.5 to 158.0 grams of carbon dioxide equivalent throughout their life cycles.

Today's market-leading silicon photovoltaic cells can expect an energy payback period of 1.3 to 2.4 years, with an initial carbon footprint between 22.1 and 38.1 grams of carbon dioxide equivalent emissions per kilowatt hour output.

"Recycling makes perovskites outcompete all other rivals," Tian said.

Informed state and federal policies, along with recycling infrastructure development strategies, can further mitigate the environmental impacts in making photovoltaic solar cells.

Said You: "The real value of an effective green perovskite solar panel industry may rely on a recycling program."

'Life cycle assessment of recycling strategies for perovskite photovoltaic modules' by Xueyu Tian et al; Nature Sustainability (2021)

CS International to return to Brussels – bigger and better than ever!


The leading global compound semiconductor conference and exhibition will once again bring together key players from across the value chain for two-days of strategic technical sessions, dynamic talks and unrivalled networking opportunities.


Join us face-to-face on 9-10 November 2021

  • View the agenda.
  • 3 for the price of 1. Register your place and gain complementary access to TWO FURTHER industry leading conferences: PIC International and SSI International.
  • Email info@csinternational.net  or call +44 (0)24 7671 8970 for more details.

*90% of exhibition space has gone - book your booth before it’s too late!

Register


Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event