Info
Info
News Article

Raytheon Replaces SiC Substrates With Diamond For GaN RF Power

Diamond materials are anticipated to triple power density over silicon carbide




Raytheon Company has achieved another significant milestone for next generation gallium nitride) GaN Radio Frequency (RF) semiconductor technology. 

Through the Defence Advanced Research Projects Agency (DARPA) Near Junction Thermal Transport effort under the Thermal Management Technologies program, Raytheon's team is replacing GaN's current substrate, SiC, with diamond, a material with three to five times higher thermal conductivity, to create GaN on diamond devices. 

Raytheon has demonstrated that GaN on diamond technology triples transistor power density over GaN on Silicon Carbide (SiC), overcoming a major barrier to unlocking the potential of GaN devices. 

Data was obtained on a 10 x 125µm (1.25mm) GaN on diamond HEMT, a device representing a unit cell for constructing Power Amplifier Monolithic Microwave Integrated Circuits (MMICs), the foundation of solid-state RF transmitters and Active Electronically Scanned Arrays. This result builds on prior successes, including Raytheon's first demonstration of GaN on diamond transistors in 2009, and GaN on diamond MMICs in 2011.    

"Raytheon continues to be an innovator leading the development of GaN technology," says Joe Biondi, vice president of Advanced Technology for Raytheon's Integrated Defence Systems (IDS) business. "We are now inserting GaN into DoD systems while remaining focused on continuing to increase performance of this revolutionary semiconductor to provide our warfighters with the most advanced sensing, communications and electronic warfare capabilities in the world."

GaN on diamond offers revolutionary performance improvement by reducing thermal resistance within the device and enabling GaN to be used at higher power densities, which will dramatically reduce the cost, size, weight and power of defence systems. GaN is a core competency within Raytheon and an integral technology behind some of the company's major including Air and Missile Defence Radar and Next Generation Jammer. GaN's unique qualities allow radar, electronic warfare and communications systems to be smaller, more affordable and highly efficient.

Raytheon Company also recently announced that under the DARPA MTO Wide Bandgap Semiconductor Program, the company has systematically matured GaN from basic material to transistors, MMICs, Transmit/Receive (T/R) Modules and finally Transmit/Receive Integrated Multichannel Modules (TRIMMs), enabling game changing system performance for the DOD.

 



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event