Info
Info
News Article

US Researchers Find Way To Make Biosensors From GaN

Two-step process binds peptides in a stable way to GaN's surface

Scientists from North Carolina State University have found a way of binding peptides to the surface of GaN in a way that keeps the peptides stable even when exposed to water and radiation. 

The researchers are interested in using GaN's biocompatibility and the way it fluoresces when exposed to radiation to make biosensors that can sense specific molecules, or "˜analytes' in a biological environment.

To make a GaN biosensor, the GaN is coated with peptides - chains of amino acids -  that would respond to the presence of specific analytes by binding with the molecules.

The idea is that, when exposed to radiation, the intensity of the light emitted by the GaN would change, depending on the number of analytes bound to the peptides on the surface. This would allow researchers and clinicians to monitor the presence of different molecules in a biological system.

"A key challenge in developing GaN biosensors has been finding a technique to bind the peptides to the GaN surface in a way that keeps the peptides stable when exposed to aqueous environments - like a cell - and to radiation," says Albena Ivanisevic, senior author of a paper on the work and an associate professor of materials science and engineering at NC State. "Now we have done that."

"We used a two-step process to bind the peptides," explains Nora Berg, a PhD student at NC State and lead author of the paper. "First we used a combination of phosphoric and phosphonic acids to etch the GaN and create a stable 'cap' on the surface. We were then able to attach the relevant peptides to the phosphonic acids in the cap."

To determine the stability of the peptides, the researchers placed the coated GaN in an aqueous solution and then placed the solution in a "phantom material" that mimics animal tissue. The GaN, solution and phantom material were then exposed to high levels of radiation, beyond what would be expected in a clinical setting. The material was then evaluated to see if there was any degradation of the peptides or of the GaN itself.

"The peptides remained on the surface," Berg says. "The aqueous solution caused an oxide layer to form on the surface but there is no indication that this would affect the functionality of the peptides."

"Now that we've shown that this approach allows us to create functional, stable peptide coatings on this material, we're moving forward to develop a particle configuration - which would be injectable," Ivanisevic says. "This will open the door to in vitro testing of the material's sensing capabilities."

The paper, "˜Surface Characterization of Gallium Nitride Modified with Peptides Before and After Exposure to Ionizing Radiation in Solution' was published online Dec. 5 in the journal Langmuir. The paper was co-authored by  Michael Nolan, an assistant professor of radiation biology and oncology at NC State, and Tania Paskova, a research professor of electrical engineering at NC State.



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event