US team reports strong light matter coupling in 2D MoS2
Prospects of developing computing and communication technologies based on quantum properties of light and matter may have taken a major step forward thanks to research by City College of New York physicists led by Vinod Menon.
In a pioneering study, Menon and his team were able to discover half-light, half-matter particles in atomically thin semiconductors consisting of a 2D layer of MoS2. They sandwiched the 2D material in a light trapping inside a dielectric microcavity at room temperature to realise these composite quantum particles, called microcavity polaritons.
"Besides being a fundamental breakthrough, this opens up the possibility of making devices which take the benefits of both light and matter," said Menon.
For example one can start envisioning logic gates and signal processors that take on best of light and matter. The discovery is also expected to contribute to developing practical platforms for quantum computing.
Dirk Englund, a professor at MIT whose research focuses on quantum technologies based on semiconductor and optical systems commented:"What is so remarkable and exciting in the work by Vinod and his team is how readily this strong coupling regime could actually be achieved. They have shown convincingly that by coupling a rather standard dielectric cavity to exciton-polaritons in a monolayer of MoS2, they could actually reach this strong coupling regime with a very large binding strength," he said.
Menon's research team included City College PhD students, Xiaoze Liu, Tal Galfsky and Zheng Sun, and scientists from Yale University, National Tsing Hua University (Taiwan) and Ecole Polytechnic -Montreal (Canada).
The study appears in the January issue of the journal Nature Photonics. It was funded by the US Army Research Laboratory's Army Research Office and the National Science Foundation through the Materials Research Science and Engineering Center - Center for Photonic and Multiscale Nanomaterials.
'Strong light"“matter coupling in two-dimensional atomic crystals' by Xiaoze Liu et al, appears in Nature Photonics 9, 30"“34 (2015), doi:10.1038/nphoton.2014.304