Info
Info
News Article

US Team Recruits Bacteria To Make CdS Quantum Dots

Biosynthesis offers potential for low-cost, environmentally-friendly manufacture of quantum dot nanocrystals

A team of engineers from Lehigh University in the US has demonstrated a bacterial method for the low-cost, environmentally friendly synthesis of aqueous soluble CdS quantum dot (QD) nanocrystals at room temperature.

Principal researchers Steven McIntosh, Bryan Berger and Christopher Kiely, along with a team of chemical engineering, bioengineering, and material science students present this novel approach for the reproducible biosynthesis of extracellular, water-soluble QDs in the July 1 issue of the journal Green Chemistry

This is believed to the first example of engineers harnessing nature's unique ability to achieve cost effective and scalable manufacturing of QDs using a bacterial process.

Using an engineered strain of Stenotrophomonas maltophilia to control particle size, the team biosynthesised QDs using bacteria and CdS to provide a route to low-cost, scalable and green synthesis of CdS nanocrystals with extrinsic crystallite size control in the quantum confinement range. The solution yields extracellular, water-soluble quantum dots from low-cost precursors at ambient temperatures and pressure. The result is CdS semiconductor nanocrystals with associated size-dependent band gap and photoluminescent properties.

This researchers think this biosynthetic approach provides a viable pathway to realise the promise of green biomanufacturing of these materials. The Lehigh team presented the process recently to a showcase of investors and industrial partners at the TechConnect 2015 World Innovation Conference and National Innovation Showcase in Washington, D.C. June 14-17.

"Biosynthetic QDs will enable the development of an environmentally-friendly, bio-inspired process unlike current approaches that rely on high temperatures, pressures, toxic solvents and expensive precursors," Berger says. "We have developed a unique, 'green' approach that substantially reduces both cost and environmental impact."

This newly described process allows for the manufacturing of quantum dots using an environmentally benign process and at a fraction of the cost. Whereas in conventional production techniques QDs currently cost $1,000-$10,000 per gram, the biomanufacturing technique cuts that cost to about $1-$10 per gram. The substantial reduction in cost potentially enables large-scale production of QDs viable for use in commercial applications.

"We estimate yields on the order of grams per liter from batch cultures under optimized conditions, and are able to reproduce a wide size range of CdS QDs," said Steven McIntosh.

The research is funded by the National Science Foundation's Division of Emerging Frontiers in Research and Innovation (EFRI Grant No. 1332349) and builds on the success of the initial funding, supplied by Lehigh's Faculty Innovation Grant (FIG) and Collaborative Research Opportunity Grant (CORE) programs.

The Lehigh research group is also investigating, through the NSF's EFRI division, the expansion of this work to include a wide range of other functional materials. Functional materials are those with controlled composition, size, and structure to facilitate desired interactions with light, electrical or magnetic fields, or chemical environment to provide unique functionality in a wide range of applications from energy to medicine.

McIntosh said, "While biosynthesis of structural materials is relatively well established, harnessing nature to create functional inorganic materials will provide a pathway to a future environmentally friendly biomanufacturing based economy. We believe that this work is the first step on this path." 



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event