Info
Info
News Article

Cutting Grooves In GaAs Increases THz Emission

Japanese group show how femtosecond-laser ablation could close the 'terahertz gap'

Sitting between infrared and microwave radiation, the terahertz (THz) part of the electromagnetic spectrum has been largely unused due to a lack of cheap ways to mass-produce THz-based devices.

Now research published in Optics Letters by the Femtosecond Spectroscopy Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) in Japan, suggests a solution to the 'terahertz gap' might lie in altering the microstructure of THz emission GaAs-based devices.

THz radiation can penetrate fabrics, paper, cardboard, plastics, wood, and ceramics. Many materials have a unique 'fingerprint' in the THz band allowing their easy identification with THz scanners. Moreover, THz radiation is safe for live tissues and DNA, due to its non-ionising properties. Because of these properties, many believe that  being able to exploit THz wavelengths could open up new approaches to medical imaging, detection of chemicals such as explosives, and even data communication. 

Today, however, generating THz waves is difficult since the frequency is too high for conventional radio transmitters, but too low for optical transmitters, like the majority of lasers. One of the most frequently used THz emitters is a photoconductive antenna, comprising two electric contacts and a thin film of semiconductor, often GaAs, between them. When the antenna is exposed to a short pulse from a laser, the photons excite electrons in the semiconductor, and a short burst of THz radiation is produced. Thus the energy of the laser beam is transformed into a THz electro-magnetic wave.

OIST researchers have showed that the micro-structure of the semiconductor surface plays an important role in this process. Femtosecond-laser-ablation, in which the material is exposed to ultrashort bursts of high energy, creates micrometre-scale grooves and ripples (pictured above) on the surface of GaAs. "The light gets trapped in these ripples", says Athanasios Margiolakis, a Special Research Student at OIST. Since more light is absorbed by the ablated material, the efficiency of THz emission, given a sufficiently powerful laser, increases by 65 percent.

Other properties of the material change as well. For example, ablated GaAs shows only a third of the electrical current of non-ablated GaAs. "We observe counter-intuitive phenomena," the researchers write, "One generally expects that the material showing the higher photocurrent would give the best THz emitter." They explain this phenomenon by shorter carrier lifetimes. That is, electrons in ablated samples return to non-agitated states much faster than in control samples.

Julien Madéo, part of the OIST team, says: "Femtosecond-laser ablation allows us to engineer the properties of materials and to overcome their intrinsic limitations, leading, for example, to near 100 percent photon absorption as well as broader absorption bandwidth, control of the electron concentration and lifetime". 

The researchers believe that the technique is a fast, lower-cost alternative to existing methods of manufacturing materials for THz applications.

'Ultrafast properties of femtosecond-laser-ablated GaAs and its application to terahertz optoelectronics', by Julien Madéo et al; Optics LettersVol. 40, issue 14 (2015)



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event