Loading...
News Article

Panasonic Develops 4.5W Continuous Wave Blue-Violet Laser

Double heat flow packaging technology enables higher output power and efficiency

Panasonic has developed a blue-violet semiconductor laser operating at output power of 4.5W, which is 1.5 times higher than that of conventional semiconductor lasers even at 60degC (the maximum operating temperature for lasers in general).

The laser can also oscillate with high energy conversion efficiency, which the company says is 1.2 times higher than that of conventional lasers. This has been made possible by Panasonic's double heat flow packaging technology (below) that improves the heat dissipation. According to the company, this newly-developed laser will help laser application systems, such as vehicle and industrial lighting as well as laser machining equipment, to be made smaller and consume less power.

In general, the output power of semiconductor lasers decreases as the laser chip temperature rises. In addition, because the temperature is the determining factor for the laser reliability (because the laser function reliability is dependent on the laser chip temperature), the actual light output that can be used in practical applications is limited by the laser chip temperature. Conventional blue-violet lasers dissipate heat from only one side of the laser chip, causing the laser chip temperature to increase and limiting the output to approximately 3 W.

Laser systems requiring an output of tens of watts would require a large number of lasers, causing more heat to be generated and requiring larger heatsinks. To solve this challenge, individual lasers require higher efficiency and larger output.

The newly-developed double heat flow packaging technology can suppress the temperature increase of laser chip that accompanies laser beam output. Consequently, the drop in laser light output caused by heat can also be prevented, enabling high-output and high-efficiency operation. 

As a result, says Panasonic, in laser systems using multiple lasers, the number of lasers can be reduced to two-thirds of those using conventional lasers. Moreover, because the heatsinks can be smaller, the system itself can be made smaller and lighter.

On the new high-output blue-violet semiconductor laser technology, Panasonic holds 23 patents in Japan and 31 patents overseas including pending applications.

Panasonic presented the research results at 2015 International Conference on Solid State Devices and Materials to be held in Sapporo, Japan on September 28.

This work is partially supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan, under the Strategic Innovation Program for Energy Conservation Technologies.

New efficiency record for CIGS perovskite tandem cells
Realising tuneable InGaN laser diodes
SiC patenting strong in Q4 2024, says KnowMade
Say hello to the heterogeneous revolution
Double heterostructure HEMTs for handsets
AlixLabs to collaborate with Linköping University
SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: