Loading...
News Article

Rice team probes MoS2 light-capturing properties

0.7nm layer absorbed over 35 percent of incident light across 400 to 700nm wavelength range

Rice University researchers have been probing the light-capturing properties of atomically thin MoS2 to understand its potential use in energy-efficient optoelectronic and photocatalytic devices.

"Basically, we want to understand how much light can be confined in an atomically thin semiconductor monolayer of MoS2," said Isabell Thomann, assistant professor of electrical and computer engineering and of materials science and nanoengineering and of chemistry.  "By using simple strategies, we were able to absorb 35 to 37 percent of the incident light in the 400 to 700nm wavelength range, in a layer that is only 0.7nm thick."

Thomann and Rice graduate students Shah Mohammad Bahauddin and Hossein Robatjazi have recounted their findings in a paper titled "˜Broadband Absorption Engineering To Enhance Light Absorption in Monolayer MoS2', which was recently published in the American Chemical Society journal ACS Photonics.

"Squeezing light into these extremely thin layers and extracting the generated charge carriers is an important problem in the field of two-dimensional materials," she said. "That's because monolayers of 2D materials have different electronic and catalytic properties from their bulk or multilayer counterparts."

Thomann and her team used a combination of numerical simulations, analytical models and experimental optical characterisations. Using 3D electromagnetic simulations, they found that light absorption was enhanced 5.9 times compared with using MoS2  on a sapphire substrate.

"If light absorption in these materials was perfect, we'd be able to create all sorts of energy-efficient optoelectronic and photocatalytic devices. That's the problem we're trying to solve," Thomann said.

While pleased with her lab's progress, Thomann concedes that much work remains to be done. "The goal, of course, is 100 percent absorption, and we're not there yet."

Say hello to the heterogeneous revolution
Double heterostructure HEMTs for handsets
AlixLabs to collaborate with Linköping University
SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: