Loading...
News Article

Quantum dot lasers poised for mass production

Japan-based QD Laser has firm orders for its MBE-grown quantum-dot Fabry-Perot lasers, and by the end of this year it should become the first company to make such devices on a volume production scale.

QD Laser, the joint venture between Japanese telecom giant Fujitsu and Mitsui Ventures that specializes in quantum-dot optoelectronics, is poised to become the first company to mass-produce Fabry-Perot (FP) lasers based on the advanced technology.

Incorporated in Tokyo in April 2006, QD Laser told compoundsemiconductor.net that it already has firm orders from customers in Japan, and was currently providing engineering samples and testing mass production. A full production release is scheduled before the end of 2008.

QD s first products will be FP lasers emitting at 1310 nm. The critical advantage of the InAs quantum-dot nanostructures used in these lasers is that they render the devices almost completely insensitive to changes in temperature over a very wide range "“ QD Laser claims from -40°C to 100°C.

At high temperatures, conventional FP lasers require much higher drive currents to generate useful power than they do when either cooled or running at room temperature. The switch-on current required to stimulate lasing is also much higher.

Other advantages of the technology, which makes the lasers behave more like individual atoms than bulk materials, include improved efficiency and a smaller package size. All of this is possible because at these atomic scales, it is the size of the dot, rather than its material make-up, that controls physical behavior.

Michael Usami from the company said that QD Laser uses its in-house MBE expertise to grow the FP laser epiwafers on GaAs substrates. External foundries complete the wafer processing and package the lasers into standard TO-cans.

Usami added that QD Laser expects to be mass-producing quantum-dot Fabry-Perot lasers before the year is out, with a subsequent six-month ramp to reach full production volumes. Distributed feedback lasers are set to follow.

The new lasers feature anywhere between five and 12 layers of InAs quantum dots, each one measuring around 20 x 20 x 5 nm. "We have the highest dot density growth in the world," Usami said. "It is about 60 billion [dots] per square centimeter for mass production."

Controlling the size of the self-assembling quantum dots during the epitaxial growth stage is one of the key problems that QD Laser's engineers have overcome and, which, until now, has hindered the scale-up to mass production and restricted the commercial viability of quantum-dot devices.

At QD Laser, layers of InAs islands are deposited between a stack of intermediate layers of GaAs, with careful control of the growth recipe and temperature proving critical.

In collaboration with the Arakawa group at the University of Tokyo, the company has introduced antimony into the epitaxial process to increase the dot density to record levels, which delivers additional gain in the lasers. In the past couple of years, they have been able to improve control over the laser s polarization and wavelength.

Growth of the InAs dots on InP substrates to make longer-wavelength components is also progressing well, and future products will be aimed at longer-reach communications.

The company is also working on polarization-insensitive semiconductor optical amplifiers (SOAs) for use in the metropolitan and access levels of fiber-optic networks.

×
Search the news archive

To close this popup you can press escape or click the close icon.
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: