Loading...
News Article

III-V solar cells turn plants into powerhouses

The multi-junction tandem solar cell initially developed at NREL has proved to be an important strategy to understand how to boost the efficiency of corn, grasses, algae, and other plants that use photosynthesis to produce stored solar energy.

Plants can overcome their evolutionary legacies to become much better at using biological photosynthesis to produce energy, the kind of energy that can power vehicles in the near future, an all-star collection of biologists, physicists, photochemists, and solar scientists has found.

A U.S. Department of Energy (DOE) workshop that drew a prestigious collection of 18 scientists to compare the efficiency of plants and photovoltaic solar cells led to an important and provocative scholarly article in the journal Science. Two of the scientists are from DOE’s National Renewable Energy Laboratory (NREL), Arthur J. Nozik and Maria Ghirardi.

Titled“Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” the article combines lessons learned from evolutionary photobiology and modern solar cells to make the case for a potentially huge boost in the efficiency of the solar production of biofuels.

The multi-junction tandem solar cell initially developed at NREL proved to be an important strategy to understand how to boost the efficiency of corn, grasses, algae, and other plants that use photosynthesis to produce stored solar energy.

The annually averaged efficiency of photovoltaic electrolysis based on silicon semiconductors to produce fuel in the form of hydrogen is about 10 %, while a plant’s annually averaged efficiency using photosynthesis to form biomass for fuel is about 1 or 2 %.

Plants, following the path of evolution, are primarily interested in reproducing and repairing themselves. The efficiency at which they produce stored solar energy in biomass is secondary.

Still, things can change.

Just as early Native Americans manipulated skinny, non-nutritious Teosinte into fat, juicy kernel corn, today’s plants can be manipulated to become much better sources of energy.

Nozik, a NREL senior research fellow, and Senior Scientist Mark Hanna recently demonstrated how a multi-junction, tandem solar cell for water splitting to produce hydrogen can provide higher efficiency – more than 40 %-- by using multiple semiconductors and/or special photoactive organic molecules with different band gaps arranged in a tandem structure.

The coupling of different materials with different energy gaps means photons can be absorbed and converted to energy over a wider range of the solar spectrum.

“In photovoltaics, we know that to increase power conversion efficiency you have to have different band gaps (i.e., colours) in a tandem arrangement so they can more efficiently use different regions of the solar spectrum,” Nozik said. “If you had the same gap, they would compete with each other and both would absorb the same photon energies and not enhance the solar conversion efficiency.”

Photosynthesis does use two gaps based on chlorophyll molecules to provide enough energy to drive the photosynthesis reaction. But the two gaps have the same energy value, which means they don’t help each other to produce energy over a wider stretch of the spectrum of solar light and enhance conversion efficiency.

Furthermore, most plants do use the full intensity of sunlight but divert some of it to protect the plant from damage. Whereas photovoltaics use the second material to gain that photoconversion edge, plants do not, Nozik noted.

One of NREL’s roles at the DOE workshop was to help make it clear how the efficiency of photosynthesis could be improved by re-engineering the structure of plants through modern synthetic biology and genetic manipulation based on the principles of high efficiency photovoltaic cells, Nozik said. In synthetic biology plants can be built from scratch, starting with amino acid building blocks, allowing the formation of optimum biological band gaps.

The newly engineered plants would be darker, incorporating some biological pigments in certain of nature’s flora that would be able to absorb photons in the red and infrared regions of the solar spectrum.

As plants store more solar energy efficiently, they potentially could play a greater role as alternative renewable fuel sources. The food that plants provide also would get a boost. And that would mean less land would be required to grow an equivalent amount of food.

The new information in the Science manuscript will help direct the development of new plants that have a better propensity for reducing carbon dioxide to biomass. This could spur exploration of blue algae, which not only comprise about one quarter of all plant life, but are ideal candidates for being genetically engineered into feedstock, because they absorb light from an entirely different part of the spectrum compared to most other plants.

“It would be the biological equivalent of a tandem photovoltaic cell,” said Robert Blankenship, one of the lead authors in the Science paper who studies photosynthesis at Washington University in St. Louis. “And those can have very high efficiencies.”
Improving annealing conditions for GaN MOSFETs
NREL publishes Si-perovskite tandem analysis
Indichip Semis to build $1.4b SiC fab
Printing high-speed modulators on SOI
Sivers signs CHIPS Act contracts
Photon IP raises €4.75m for advanced PICs
Imec makes breakthrough with GaAs lasers on silicon
VueReal appoints VP of semiconductor engineering
Plessey and Meta announce brightest red microLED display
Laser Thermal wins contract from Louisiana Tech University
Riber gets repeat US order for MBE 412 cluster
Na‑flux method improves GaN device performance
X-Rite introduces booth for LED-based colour evaluation
Quantum Science signs QD technology deal
Penn State makes breakthrough in photonic switching
Rohm develops 1kW class IR laser diode
US ITC says Innoscience infringed EPC GaN patent
Aledia's microLED line is ready to roll
China adds more US firms to export control List
Imec shows outdoor stability of perovskite modules
Chiplets set to transform electronics, says IDTechEx
Riber secures production system order in Europe
FBH to present novel lasers at Photonics West
US DOE awards $179m for fundamental chip research
Polar Light Tech makes microLED breakthrough
Precursor modulation enhances DUV LED efficiency
US Government to probe Chinese chip trade practices
EPC Space achieves JANS MIL-PRF-19500 certification
HKUST team develops DUV microLED chips for lithography
Porotech partners with Foxconn on microLEDs
Scientists make laser-based artificial neuron
NS Nanotech shows benefit of far-UVC in ambulances
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: