News Article
SiN optical wavelength converter is oh so quiet
Researchers have demonstrated a noise-free wavelength conversion using silicon nitride waveguides fabricated on a silicon substrate
Researchers from the NIST Centre for Nanoscale Science and Technology have demonstrated a low-noise device for changing the wavelength of light using nanofabricated waveguides created on a silicon-based platform using standard planar fabrication technology.
Optical wavelength conversion is an important resource for applications in both classical and quantum information processing; it can connect physical systems operating at different wavelengths, and facilitate improved light detection by converting light to wavelengths for which highly sensitive detectors are available.
However, for many such applications the conversion process must not introduce additional noise. The researchers were able to demonstrate noise-free wavelength conversion using silicon nitride (SiN) waveguides fabricated on a silicon substrate.

These waveguides were designed based on electromagnetic simulations to determine an appropriate device geometry for a process called four-wave-mixing Bragg scattering, where an input signal field is converted to an output field whose frequency is shifted from the original by an amount equal to the difference in the frequencies of two applied pump fields.
Measurements show conversion efficiencies in these devices as high as a few percent, approaching the levels needed for some applications, and with no excess noise added during the conversion process.
These new noise-free frequency converters are dramatically smaller than the nonlinear crystals and optical fibres used in previous work (by several orders of magnitude), and can be created in arrays and integrated with other on-chip devices using scalable silicon-based fabrication methods.
The scientists say that in the future, they will focus on increasing the conversion efficiency levels by optimising the waveguide geometry and incorporating the waveguides into optical resonators.

Connecting the Compound Semiconductor Industry
The 13th CS International conference builds on the strengths of its predecessors, with around 40 leaders from industry and academia delivering presentations that fall within five key themes: Ultrafast Communication; Making Headway with the MicroLED; Taking the Power from Silicon, New Vectors for the VCSEL, and Ultra-wide Bandgap Devices.
Delegates attending these sessions will gain insight into device technology, find out about the current status and the roadmap for the compound semiconductor industry, and discover the latest advances in tools and processes that will drive up fab yields and throughputs.
To discover our sponsorship and exhibition opportunities, contact us at:
Email: info@csinternational.net
Phone: +44 (0)24 7671 8970
To register your place as a delegate, visit: https://csinternational.net/register
Register
The 13th CS International conference builds on the strengths of its predecessors, with around 40 leaders from industry and academia delivering presentations that fall within five key themes: Ultrafast Communication; Making Headway with the MicroLED; Taking the Power from Silicon, New Vectors for the VCSEL, and Ultra-wide Bandgap Devices.
Delegates attending these sessions will gain insight into device technology, find out about the current status and the roadmap for the compound semiconductor industry, and discover the latest advances in tools and processes that will drive up fab yields and throughputs.
To discover our sponsorship and exhibition opportunities, contact us at:
Email: info@csinternational.net
Phone: +44 (0)24 7671 8970
To register your place as a delegate, visit: https://csinternational.net/register
Register