Loading...
News Article

A more sustainable white LED?

US scientists develop rare-earth-free LED phosphors

An LED coated with a yellow 'phosphor' is shown turned off (left) and then turned on (right).

US researchers claim to have developed a less expensive, more sustainable white LED, which they will discuss this week at the 250th National Meeting & Exposition of the American Chemical Society (ACS). ACS is the world's largest scientific society.

"If more people in the US used LEDs in their homes and businesses, the country's electricity consumption could be cut in half," says Zhichao Hu, a member of the Rutgers University team that performed the research under the direction of Jing Li. At that time, he was a graduate student. He is now a postdoc at Rutgers studying the recovery of rare-earth elements.

To achieve the common, soft white light that consumers expect, current LED technologies typically use a single semiconductor chip to produce light, usually blue, and then rely on a yellow-emitting phosphor coating to shift the colour to white. The phosphor is made from materials, such as cerium-doped yttrium aluminum garnet, that are composed of rare-earth elements. These elements are expensive and in limited supply, since they are primarily available only from mining operations outside the US. 

Li's team is developing hybrid phosphor-based technologies that are claimed to be more sustainable, efficient and less costly. They combine common, earth-abundant metals with organic luminescent molecules to produce phosphors that emit a controllable white light from LEDs. By varying the metal and organic components, the researchers can systematically tune the colour of the phosphors to regions of the visible light spectrum that are most acceptable to the human eye, Hu and Li note. The team is continuing to experiment and develop other rare-earth-free LED phosphors based on different metals and organic compounds.

Many material combinations are possible, so they use a computational approach to initially sort through the possibilities and to predict what colour of light the various metals and organics combinations will emit. They then test the best combinations experimentally.

Their approach allows a systematic fine tuning of band gaps and optical emissions that cover the entire visible range, including yellow and white colours. As a result, their LEDs can be fine-tuned to create a warmer white light, similar to cheaper but inefficient incandescent lights. Their approach shows significant promise for use in general lighting applications.

"One of challenges we had to overcome was to figure out the right conditions to synthesise the compound," Hu notes. "Like cooking, the synthesis requires a 'recipe.' It's often not the case that one can simply mix the starting materials together and get the desired product. We optimized the reaction conditions -- temperature and the addition of a solvent  -  and developed an easy procedure to make the compound with high yield."

Experiments with some materials have shown that the team's technology can cut LED costs by as much as 90 percent from current methods that rely on rare-earth elements. They have several granted and pending US patents and are exploring manufacturing possibilities.

Funding for this research was provided by the National Science Foundation and Rutgers University. Hu is currently funded by the Department of Energy's Critical Materials Institute.

×
Search the news archive

To close this popup you can press escape or click the close icon.
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: