Info
Info
News Article

Electronics That Dissolve In Ambient Moisture

News

Researchers report a new type of 'physically transient electronics' that can dissolve through exposure to water molecules in the atmosphere

Researchers from the University of Houston and China have reported a new type of electronic device that can be triggered to dissolve through exposure to water molecules in the atmosphere. The time period can range from days to weeks, or even longer, they said.

The researchers tested a number of compounds, including aluminum, copper, nickel indium-gallium, zinc oxide and magnesium oxide, and developed various electronic devices, including resistors, capacitors, antennas, transistors, diodes, photo sensors and more, to demonstrate the model's versatility.

The work holds promise for eco-friendly disposable personal electronics and biomedical devices that dissolve within the body. There are also defence applications, including devices that can be programmed to dissolve in order to safeguard sensitive information, said Cunjiang Yu, Bill D. Cook Assistant Professor of mechanical engineering at the University of Houston and lead author of the paper, published in Science Advances.

The field, known as physically transient electronics, currently requires immersion in aqueous corrosive solutions or biofluids. Yu said this work demonstrates a completely new working mechanism - the dissolution is triggered by ambient moisture. "More importantly, the transient period of time can be precisely controlled," he said.

That means a biomedical implant could be programmed to disappear when its task - delivering medication, for example - is complete. Sensitive communications could be devised to literally vanish once the message was delivered.

And all those old cell phones littering kitchen drawers? New versions could be programmed to dissolve when they are no longer needed.

"We demonstrate that polymeric substrates with novel degradation kinetics and associated transience chemistry offer a feasible strategy to construct physically transient electronics," the researchers wrote. "Through the manipulation of the polymer component and environmental humidity, the progress of hydrolysing polyanhydrides can be managed and thus the dissolution kinetics of (a) functional device can be controlled."

The model constructed by the researchers works like this: Functional electronic components were built via additive processes onto a film made of the polymer polyanhydride. The device remained stable until ambient moisture triggered a chemical breakdown that digested the inorganic electronic materials and components.

The lifespan of the devices can be controlled by varying the humidity level or by changing the polymer composition, Yu said.



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event