Loading...
News Article

Could Nanoplatelets Make TVs More Efficient?

News

Researchers at NIST and Sharp Labs think sheet-like optically active CdTe materials could help create more energy efficient screens

Researchers at NIST and Sharp Laboratories of America have discovered new optical properties in sheet-like materials that could eventually make flat-screen televisions, laptops and other light-emitting appliances more energy-efficient.

Known as semiconductor nanoplatelets (NPLs), the materials are just a few atoms thick and made of CdTe. Created with standard chemistry methods, NPLs are eventually intended to work as light-converting elements in consumer devices.

Nanoplatelets could replace the phosphor coatings that are currently used to create full-colour light in TV screens and other display and lighting technologies. In such displays, LEDs are used to shine light through the phosphors to create a full-colour spectrum.

Although phosphors true-to-life colours that are easy to turn into dynamic pictures on screens, the light-conversion process needs to become more energy-efficient. In addition, replacing phosphors could further increase a display's dynamic range, making possible even blacker blacks and brighter colours than is possible today.

Recently, researchers and engineers have developed quantum dots (QD) to replace phosphor coating for the light conversion. However, the colour quality of light produced by QDs, which are placed directly on a blue LED source, is hard to control due to a phenomenon known as thermal quenching. The light from QDs dramatically dims due to inevitable heating in excess of 100degC from the LED source commonly used in today's televisions and monitors.

Like QDs, NPLs are designed to emit multicoloured light. Both QDs and NPLs are only a few nanometers thick. But it's much easier to tailor NPLs' colour-converting properties because it is determined only by the nanoplatelets' thickness, a much easier property to control than the size of a three-dimensional QD. In addition, the NIST and Sharp Laboratories research has demonstrated that the light from NPLs does not get quenched at elevated temperatures, which is critical for next-generation lighting technology.

More work is needed before the NPLs will be ready for wide-scale market use. But eventually, these optically active nanoplatelets may be as associated with reducing energy waste in lighting and display technologies. Since about 15 percent of the world's electricity consumption is currently used for lighting, these tiny sheets of CdTe material may make a big difference in energy efficiency. Developing cadmium-free NPLs is one of the next problems that scientists aim to solve.

'High-Temperature Photoluminescence in Colloidal 'Quasi 2D Materials' by A.Y. Koposov et al; Journal of Physical Chemistry. Published February 13, 2018.

Double heterostructure HEMTs for handsets
AlixLabs to collaborate with Linköping University
SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: