Loading...
News Article

French team uses quantum dots for artificial photosynthesis

News

Cheaper, less toxic and recyclable light absorbers could show the way forward for hydrogen production using solar energy

Mimicking photosynthesis in plants, using light to convert stable and abundant molecules like water and CO2 into a high energy fuel (hydrogen) or into chemicals of industrial interest, is a major research challenge today. However, achieving artificial photosynthesis in solution remains limited by the use of costly and toxic metal-based compounds to harvest light.

Researchers at CNRS, CEA and the Université Grenoble Alpes propose an efficient alternative using semiconductor quantum dots based on cheaper and less toxic elements, such as copper, indium and sulphur. Their work was published in Energy & Environmental Science.

In artificial photosynthesis systems chromophores, or 'photosensitisers', absorb light energy and transfer electrons to the catalyst, which activates the chemical reaction. Although much progress has been made in recent years in the development of catalysts devoid of noble metals, photosensitisers still rely, in the main, on molecular compounds containing rare and costly metals, such as ruthenium and iridium, or on inorganic semiconductor materials containing cadmium, a toxic metal.

For the first time, researchers at the Département de Chimie Moléculaire (CNRS/Université Grenoble Alpes) and SyMMES (CNRS/CEA/Université Grenoble Alpes) have demonstrated, by joining their expertise in semiconductor engineering and photocatalysis, that it is possible to produce hydrogen very efficiently by combining inorganic quantum dots formed of a copper and In2S3 core protected by a ZnS shell, with a cobalt-based molecular catalyst.

This 'hybrid' system combines the excellent visible light absorption properties and the great stability of inorganic semiconductors with the efficacy of molecular catalysts. In the presence of excess vitamin C, which provides electrons to the system, it shows remarkable catalytic activity in water, the best obtained to date with cadmium-free quantum dots. This system's performance is much higher than that obtained with a ruthenium-based photosensitiser, due to the very high stability of inorganic quantum dots, which can be recycled several times without notable loss of activity.

These results show the high potential of such hybrid systems for hydrogen production using solar energy.Cadmium-Free CuInS2/ZnS Quantum Dots as Efficient and

'Robust Photosensitizers in combination with a Molecular Catalyst for Visible Light-Driven H2 Production in Water', by M. Sandroni et al; Energy & Environmental Science, 10 April 2018.

Double heterostructure HEMTs for handsets
AlixLabs to collaborate with Linköping University
SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: