Loading...
News Article

Researchers show 6.1eV direct bandgap for monolayer BN

News

Hexagonal BN could be a promising optoelectronic material with highly efficient emission in deep ultraviolet

High-temperature MBE offers new opportunities in the burgeoning field of 2D materials and related van der Waals heterostructures. Now scientists at Nottingham University (UK) and Montpellier University (France) have applied this technology to hexagonal boron nitride (hBN).

Whereas bulk hBN is an indirect band-gap material, theoretical work has predicted that hBN becomes direct gap in the atomic monolayer limit.

MBE growth and atomic-force microscopy at Nottingham University were complemented by reflectance and photoluminescence spectroscopy at Montpellier University, revealing a direct band-gap at 6.1 eV (wavelength 205 nm) for monolayer thick boron nitride.

The demonstration of a direct band-gap in monolayer hBN grown by the scalable approach of MBE makes it a promising optoelectronic material with highly efficient emission in the deep ultraviolet (DUV).

Monolayer boron nitride was synthesised before the discovery of graphene by decomposing of borazine on a metal surface. It was later produced by exfoliation or electron beam thinning of bulk crystals of hBN. Recently, wafer-scale single-crystals of monolayer boron nitride were reported by chemical vapour deposition. For these fabrication methods, luminescence could only be detected down to 6 monolayers, leaving unanswered the question of emission from monolayer hBN.

The Montpellier – Nottingham team have resolved this issue using a strategy which relies on the scalable growth of monolayer boron nitride and which enables macroscopic photoluminescence and reflectance measurements. Their wafer-scale layers are grown by high-temperature MBE on highly oriented pyrolytic graphite substrates.

The closely lattice-matched graphite substrate enables synthesises of monolayer boron nitride by van der Waals epitaxy with an interface free from intermixing effects. With reflectance measurements on monolayer hBN showing a pronounced resonance at around 6.1 eV, photoluminescence experiments now reveal emission at this energy.

The picture at the top shows the reflectance of epitaxial monolayer BN on graphite. a) Reflectance spectrum in the deep ultraviolet for the bare graphite substrate (grey line), mBN on graphite (blue line), and bulk hBN (red line), at 10 K. b Schematic of the reflectance experiment performed on the mBN-graphite heterostructure synthesised by van der Waals epitaxy. HOPG stands for highly oriented pyrolytic graphite

The absence of a Stokes-shift between reflectance and photoluminescence contrasts with multilayer and bulk hexagonal boron nitride, thus providing the signature of a direct-gap in monolayer boron nitride.

The researchers intend to further develop the growth of hBN for deep ultraviolet (DUV) applications, perform graphene encapsulation and graphene/hBN superlattices.

'Direct band-gap crossover in epitaxial monolayer boron nitride' by, C. Elias et al; Nature Communications 10, 2639 (2019).

SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: