Loading...
News Article

Nanoscale visualisation of dopant in GaN

News

Significant advances in the understanding of P-Type GaN semiconductor formation mechanisms and techniques enabling mass production of GaN devices

Scientists at the National Institute for Materials Science (NIMS) in Japan have succeeded for the first time in visualising at the nanoscale the distribution and optical behaviour of GaN implanted with a small amount of magnesium. They believe this may help in improving electrical performance of GaN based devices.

They have also revealed some of the mechanisms by which introduced magnesium ions convert GaN into a p-type semiconductor. These findings may significantly expedite the identification of optimum conditions for magnesium implantation vital to the mass production of GaN power devices.

The development of GaN based power devices requires fabrication of both n- and p-type GaN semiconductors. p-type GaN semiconductors can be mass produced by introducing magnesium ions into GaN wafers and subjecting the wafers to thermal treatment.

However, no method existed for assessing the effect of magnesium concentrations and thermal treatment temperature on the distribution and optical behaviour of magnesium implanted into GaN at nanoscale dimensions. In addition, the mechanisms by which p-type GaN forms remained unclear so far. These issues had been hindering the development of technologies enabling mass production of GaN devices.

For this research, the team prepared slanted cross-sections of magnesium ion-implanted GaN wafers by polishing the wafers at an angle and analysed the distribution of luminescence intensity on the cross-sections using a cathodoluminescence technique. As a result, they found that magnesium atoms implanted several tens of nanometers beneath the wafer surface had been activated while those immediately below the surface had not been activated (figure at left).

In addition, they found using atom probe tomography that magnesium atoms, when implanted in high concentrations, develop into either disc- or rod-shaped deposits depending on temperature (figure at right).

The integration of different analytical results generated by these latest microscopy techniques indicated that magnesium atoms implanted in the vicinity of the wafer surface may develop into deposits under certain temperature conditions, and thus prevents them from activating.

The results of this research have provided vital guidance for the development of ion-doped p-type GaN layers. Furthermore, the techniques developed during this project for the analysis of impurity distributions are applicable not only in homogeneous wafers but also in GaN device materials with varying structures. The use of these techniques may therefore speed the development of high-performance GaN devices.

Part of this research was published online in Applied Physics Express, a journal of the Japan Society of Applied Physics, on April 11, 2019.

SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfOâ‚‚ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: