News Article

FBH To Exhibit III-V Portfolio At EuMW


Range focuses on 5G, space communications, and terahertz systems for imaging

At European Microwave Week (Paris, September 29 to October 4, 2019), Ferdinand-Braun-Institut (FBH) will present its portfolio of III-V electronics for the digitisation of mobile communications, for industrial and biomedical systems as well as for use in space.

In addition to its components for 5G, space communications, and terahertz systems for imaging, FBH will show a live demonstrator for pulsed laser sources. Using a particularly fast switching GaN-based driver, pulse length and intensity can be flexibly adjusted between 200 ps and 20 ns. The system can be flexibly equipped with laser diodes of various wavelengths (630 - 1180 nm). In LiDAR systems, for example, wavelength-stabilised laser diodes emitting at 905 nm with 100 watt peak output power and pulse widths of 3-10 ns are used.

Components for 5G and for satellite communications and sensors

Information and communication technologies account for 5 percent of global energy consumption - in the telecommunications sector alone, demand is rising by 10 percent each year. The projected 5G systems will use higher frequencies, thus enabling a larger signal bandwidth. FBH presents two approaches to improve their energy efficiency: a fully digital transmitter architecture and supply voltage modulation for linear amplifiers.

For future mobile communications, the institute is developing digital power amplifiers with efficient amplifier chips based on FBH's 0.25 µm GaN-HEMT process. With them, the institute has realised the first fully digital transmitter chain that successfully transmits broadband signals with maximum efficiency and linearity (47 percent at > 52 dB ACLR). The compact digital transmitter is particularly suitable for multi-antenna systems (massive MIMO) where it can be mounted on the rear side of the antenna.

As a second approach, systems are realised whose supply voltage is modulated and which are suitable for 5G and satellite communications. Their specialty is the efficient amplification of signals with high modulation bandwidths. Together with the European Space Agency ESA, FBH has developed a novel envelope tracking (ET) demonstrator for communication in space at 1.62 GHz. The amplifier has a peak output power of more than 90 W with a modulation bandwidth of 40 MHz. With an 8.6 PAPR signal, overall efficiency reaches 40 percent.

Concepts using modulated supply voltage are now also transferred to millimetre-wave amplifiers, which is an interesting option for 5G base stations. FBH has developed a corresponding module consisting of two identical MMICs connected in series. Each consists of a single-stage amplifier with an integrated two-stage voltage switch (class G). The module operates in the 20 - 26 GHz range with 14 dB gain and more than 2 W/mm at 20 V supply voltage.

For satellite sensors, FBH is also developing a modular MIMO radar at 85 - 95 GHz based on FBH's InP transfer-substrate DHBT process. The imaging radar will be used to locate and track objects in the vicinity of satellites. For this purpose, a complete chipset was developed and integrated into a module. The chipset uses novel MMICs with a high output power of > 15 dBm, a low noise figure NF < 9 dB and frequency converters down to the baseband.

Terahertz detectors and arrays for imaging systems

The terahertz (THz) range offers good spatial resolution and can penetrate most non-metallic materials. It is therefore suitable for a wide range of industrial and safety-relevant applications. However, there are still no imaging systems available with sufficiently high sensitivity and readout speed in this frequency range. Among other things, sensitive, fast and cost-effective THz detectors are missing that offer the potential to be used in THz cameras.

FBH has successfully developed such detectors, which can easily be assembled into arrays (see picture above). The III-V-based THz detectors offer superior values for the equivalent noise power NEP < 25 pW/sqrt(Hz) with a highest sensitivity of > 100 mA/W at 500 GHz. These values exceed the best THz detectors available in CMOS technology. It is now planned to develop THz cameras with similar values and an image refresh rate of more than 500 frames per second.

AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.



Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
Live Event