+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
News Article

Brolis develops laser sensor for non-invasive blood analysis


GaSb/Si based laser sensor can remotely sense concentrations of lactate, glucose, urea, ketones or ethanol without drawing any blood

Brolis Sensor Technology, a photonics company from Vilnius, has developed a laser sensor that would replace invasive blood analysis methods.

The company says it can remotely sense concentration level of main critical blood constituents such as lactate, glucose, urea, ketones or ethanol without drawing any blood.

After the regulators approve the technology and it gets fitted into compact devices, people suffering from chronic diseases such as diabetes will no longer need to puncture their fingers numerous times a day to measure their blood glucose level.

The sensor is based on sister company Brolis Semiconductors' GaSb/Si laser technology which has a 1400nm to 2500nm wavelength range and exploits low cost CMOS IC fabrication processes. Brolis was part of a joint effort with Ghent University to demonstrate world’s first widely tuneable hybrid GaSb/Si laser in the end of 2016. Since 2017, Brolis has incorporated a dedicated R&D location for silicon photonics in Ghent, Belgium and has been actively pushing this radically new approach for non-invasive healthcare.

“We have created a unique laser-based sensor technology that operates in a spectral band which was largely unexplored in the past,” comments Augustinas Vizbaras, the CTO and co-founder of Brolis Sensor Technology. “From when Brolis was founded and we started developing this technology, we were sure that it would be suitable for medical purposes, although there are other important applications outside the medical field. The sensor can be applied in various ways - to see in the dark, to remotely sense gas, for on-site inspections in additive manufacturing processes, for security applications, among other purposes.”

Every molecule, be it lactate or glucose, is made of separate atoms - carbon, oxygen, hydrogen, nitrogen. These atoms have unique geometrical structure. When reacting with its environment, an atom vibrates at characteristic frequencies, which are called molecular fingerprints and can be sensed with laser light.

“Because of molecular fingerprints, we can identify different molecules by measuring these vibrations,” explains Vizbaras. “What is unique about our laser is that it allows analysis from a distance. The laser light is sent to the object, where it interacts with the object and its constituents. The light is then reflected back by means of diffuse reflectance and is collected by the system. Reflected light already carries object-specific information, which is analysed. By using this method, we can analyse remote objects of different phase - liquid, gas or solid.”

“When analysing blood, or other liquid phase media, one needs a very widely tuneable laser as liquids possess very broad molecular fingerprint absorption bands due to so-called collisional broadening,” adds Vizbaras. “One way to achieve this is to use a hundred lasers at the same time, but it wouldn’t be commercially viable. Our sensor is a single device that replaces the need for that many lasers.”

“Our innovation of the semiconductor technology was the cornerstone for creating the sensor,” says Vizbaras. “It is the breakthrough that we have built the device around.”

The laser developers have then discussed their innovation with the scientists from the Lithuanian University of Health Sciences to understand which molecules they should concentrate their analysis efforts on. After extensive deliberations, it was decided to focus on analysing glucose, lactates, ethanol, and urea.

There are already fully-functioning prototypes of the sensor, and the company aims to introduce them to the market in three or four years. Since it is a medical device, it has to go through extensive testing and comply with legal regulations of the US and the EU institutions.

Even though Brolis Sensor Technology are first implementing their sensors in the medical field, these devices will be applicable in other areas, too.

“Later on, we are planning on adapting the device to measure lactates, which would be useful for everyone doing sports. The sensor could be attached to any smartwatch,” elaborates Vizbaras. “Also, the sensors could be used to test blood alcohol levels via a fingerprint scan, or even partly replace common blood tests.”

The project was launched seven years ago. The research is carried out by Lithuanian scientists at Brolis Sensor Technology and is financed by the company itself.

Lithuania is home to more than 40 laser technology-related businesses, most of which are located in Vilnius. Lithuanian-made lasers are used at NASA, CERN, and various companies across the globe, such as Toyota, Mitsubishi, Hitachi, and IBM.

Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: