News Article

Solving The Linewidth Issue In Diode Lasers.

News

Project to investigate nonlinear effects in semiconductor lasers is a stepping-stone to enable next generation higher-order modulation in fibre optic networks

Aarhus University has received a grant from the Independent Research Fund Denmark to investigate nonlinear effects in semiconductor lasers - a stepping-stone to enable next generation higher-order modulation in fibre optic networks

One of the properties of lasers is the reduced spectral distribution of their optical emission as compared to other light sources.

However, this laser 'linewidth' can be greatly influenced by the environmental conditions, which deteriorate their performance when used outside the research lab.

Now, Nicolas Volet, who leads the Integrated Photonics group at Aarhus University (AU) has received a DKK 2.9 million grant from the Independent Research Fund Denmark for a new ambitious project, that aims at solving the linewidth issue of diode lasers.

This issue is known to be one of the limitations in the deployment of coherent higher-order modulation transceivers for emerging applications; for instance, 5G wireless.

This project is based on a recent breakthrough discovery made by Nicolas Volet and Holger Klein, director of chip design at the US-based company OE Solutions America, Inc (OESA).

"We have discovered a method to effectively narrow the linewidth of a laser by a factor of up to 500, which is required to enable higher-order modulation formats in coherent communication, where information is encoded in the phase, amplitude and polarization of the lightwave signal. This unique approach can reduce the cost, size and power consumption compared to today's laser technology," says Klein.

Nicolas Volet continues: "Indeed, this discovery is extremely encouraging as it is expected to turn a notorious limitation of semiconductor lasers into an opportunity to increase optical network transport capacity and simplify their packaging for real-world applications. Our group will work closely with OESA's Photonic Integrated Circuit (PIC) design team in Santa Barbara, CA led by Klein to study and further improve this new breakthrough technology."

If successful, the project encompasses a brand-new laser technology, that has the potential to simplify modern communications technology and make it much smaller, cheaper and a lot more energy-efficient - a pivotal change, since lasers are fundamental for modern communication and instrumentation:

"We are pleased to partner with professor Volet and Aarhus University on this significant work which could lead to a breakthrough in coherent optical communication for future generation optical networks," says Klein.

CS International to return to Brussels – bigger and better than ever!


The leading global compound semiconductor conference and exhibition will once again bring together key players from across the value chain for two-days of strategic technical sessions, dynamic talks and unrivalled networking opportunities.


Join us face-to-face between 28th – 29th June 2022

  • View the agenda.
  • 3 for the price of 1. Register your place and gain complementary access to TWO FURTHER industry leading conferences: PIC International and SSI International.
  • Email info@csinternational.net  or call +44 (0)24 7671 8970 for more details.

*90% of exhibition space has gone - book your booth before it’s too late!

Register


×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
{megaLeaderboard}
X
{normalLeaderboard}
Live Event