Loading...
News Article

Microchip announces AEC-Q101-qualified SiC SBDs

News

Devices’ superior avalanche performance allows designers to reduce the need for external protection circuits, reducing system cost and complexity

Microchip Technology has announced its newly-qualified 700 and 1200V SiC Schottky Barrier Diode (SBD) power devices, providing EV system designers with solutions that meet stringent automotive quality standards across a wide range of voltage, current and package options.

For EV power designers who need to increase system efficiency while maintaining high quality, Microchip’s AEC-Q101-qualified devices maximise system reliability and ruggedness and enable stable and lasting application life. The devices’ superior avalanche performance allows designers to reduce the need for external protection circuits, reducing system cost and complexity.

“As a long-time supplier to the automotive industry, Microchip’s continued expansion of automotive-capable power solutions is leading the transformation of power systems in vehicle electrification,” said Leon Gross, vice president of Microchip’s discrete product business unit. “Our focus is to provide automotive solutions that help our clients easily transition to SiC while minimizing the risk of quality, supply and support challenges.”

Microchip has been a supplier to the automotive industry for more than 25 years. The company’s SiC technology, as well as its multiple IATF 16949:2016-certified fabrication facilities, provide high-quality devices through flexible manufacturing alternatives, helping minimise risk in the supply chain.

Through Microchip internal and third-party testing, critical reliability metrics have proven Microchip devices’ superior performance when compared to other SiC manufactured devices. Unlike other SiC devices that degrade under extreme conditions, Microchip devices have demonstrated no degradation in performance, increasing the application life. Microchip SiC solutions lead the industry in reliability and ruggedness.

The company’s SiC SBD ruggedness testing demonstrates 20 percent higher energy withstand in Unclamped Inductive Switching (UIS), and among the lowest leakage currents at elevated temperatures, increasing system life and enabling a more reliable operation.

Microchip’s SiC automotive power devices complement its portfolio of controllers, analogue and connectivity solutions for electric vehicles and charging stations. Microchip also provides a broad portfolio of 700, 1200 and 1700V SiC SBD and MOSFET power modules using its newest generation of SiC die. In addition, its dsPIC digital signal controllers deliver performance, low power consumption and flexible peripherals.

Microchip’s AgileSwitch family of digital programmable gate drivers further accelerates the process of moving from the design stage to production. These solutions also have applications across renewable, grid, industrial, transportation, medical, data centre and aerospace and defence systems.

Development Tools

Microchip’s AEC-Q101-qualified SiC SBD devices are supported with SPICE and PLECS simulation models and MPLAB Mindi Analog Simulator. Also available is a PLECS reference design model that uses Microchip’s SBDs (1200V, 50A) as part of the power stage — the Vienna 3-Phase Power Factor Correction (PFC) reference design.

Microchip’s AEC-Q101 qualified 700 and 1200V SiC SBD devices (also available as die for power modules) for automotive applications are available now for volume production orders.

SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: