Loading...
News Article

Perovskite research reveals new state of matter

News

McGill scientists gain new insight into the workings perovskites that could lead to more efficient and cheaper solar cells

Researchers at McGill University in Canada have gained new insight into the workings of perovskites, a semiconductor material with great promise for making high-efficiency, low-cost solar cells and a range of other optical and electronic devices.

Perovskites can act as semiconductors even when there are defects in the material's crystal structure. Most other semiconductors require stringent and costly manufacturing techniques to produce crystals that are as defect-free as possible. In what amounts to the discovery of a new state of matter, the McGill team has made a step forward in unlocking the mystery of how perovskites pull off this trick.

"Historically, people have been using bulk semiconductors that are perfect crystals. And now, all of a sudden, this imperfect, soft crystal starts to work for semiconductor applications, from photovoltaics to LEDs," explains senior author Patanjali Kambhampati, an associate professor in the Department of Chemistry at McGill. "That's the starting point for our research: how can something that's defective work in a perfect way?"

Quantum dots, but not as we know them

In a paper published May 26 in Physical Review Research, the researchers reveal that a phenomenon known as quantum confinement occurs within bulk perovskite crystals. Until now, quantum confinement had only been observed in particles a few nanometers in size - the quantum dots of flatscreen TV fame being one much-vaunted example. When particles are this small, their physical dimensions constrain the movement of electrons in a way that gives the particles distinctly different properties from larger pieces of the same material - properties that can be fine-tuned to produce useful effects such as the emission of light in precise colours.

Using a technique known as state-resolved pump/probe spectroscopy, the researchers have shown a similar type of confinement occurs in bulk caesium lead bromide perovskite crystals. In other words, their experiments have uncovered quantum dot-like behaviour taking place in pieces of perovskite significantly larger than quantum dots.

Surprising result leads to unexpected discovery

The work builds on earlier research which established that perovskites, while appearing to be a solid substance to the naked eye, have certain characteristics more commonly associated with liquids. At the heart of this liquid-solid duality is an atomic lattice able to distort in response to the presence of free electrons. Kambhampati draws a comparison to a trampoline absorbing the impact of a rock thrown into its centre. Just as the trampoline will eventually bring the rock to a standstill, the distortion of the perovskite crystal lattice - a phenomenon known as polaron formation - is understood to have a stabilising effect on the electron.

While the trampoline analogy would suggest a gradual dissipation of energy consistent with a system moving from an excited state back to a more stable one, the pump/probe spectroscopy data in fact revealed the opposite. To the researchers' surprise, their measurements showed an overall increase in energy in the aftermath of polaron formation.

"The fact that the energy was raised shows a new quantum mechanical effect, quantum confinement like a quantum dot," Kambhampati says, explaining that, at the size scale of electrons, the rock in the trampoline is an exciton, the bound pairing of an electron with the space it leaves behind when it is in an excited state.

"What the polaron does is confine everything into a spatially well-defined area. One of the things our group was able to show is that the polaron mixes with an exciton to form what looks like a quantum dot. In a sense, it's like a liquid quantum dot, which is something we call a quantum drop. We hope that exploring the behavior of these quantum drops will give rise to a better understanding of how to engineer defect-tolerant optoelectronic materials."

'Polaronic quantum confinement in bulk CsPbBr3 perovskite crystals revealed by state-resolved pump/probe spectroscopy' by Colin D. Sonnichsen et al; Physical Review Research 26th May 2021

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: