Loading...
News Article

Infineon expands commitment to quantum computing

News

Company joins six new research projects funded by the German federal government's economic stimulus package

Infineon Technologies is strengthening its commitment to the development of quantum computing technologies in Germany and Europe. In addition to previously established initiatives, the chip manufacturer is participating in six additional research projects which are being funded as part of the German federal government's economic stimulus package for the future of quantum technologies.

The objective is to overcome obstacles in the use of quantum technology by building demonstrators, and developing electronic control circuits and software.

In partnership with research institutes and partners in industry, Infineon will contribute its expertise in microelectronics and industrial manufacturing as well as its experience in application relating to future quantum computers.

QVOL (Volume production of quantum sensors based on magnetic field sensors in silicon carbide) is the first quantum sensor project in which Infineon is involved, leading the research consortium of a total of six partners. Infineon's main task is the development of quantum sensor structures based on SiC technologies which are also suitable for high-volume production.

The QuMIC project (Qubits Control by Microwave Integrated Circuits), involving a total of six partner institutions, focuses on the miniaturization of the radio-frequency electronics and control electronics necessary for quantum computers based on ion trap or superconducting qubits. Infineon is coordinating the project and is concentrating on the investigation of highly-integrated computer chips in the radio-frequency range as well as their integration in quantum electronics. The project also focuses on the development of compact multi-chip modules.

The ATIQ project (Trapped-Ion Quantum Computer for Applications) includes 25 partners from research facilities and industry is developing an ion trap-based quantum computer demonstrator which can be made available to users reliably and around the clock within 30 months. Initially the demonstrator will work with ten qubits and will later be scaled up to more than 100 qubits. Infineon is contributing its expertise gained in ion trap projects as well as in control electronics and cryoelectronics.

MuniQC-SC (Munich Quantum Computer based on Superconductors) is developing a quantum computer demonstrator based on superconductors. Infineon is working together with ten research and start-up partners in the project, which includes laboratory, small-batch and industrial-scale manufacturing. In particular, the chip manufacturer is contributing expertise in industrial manufacturing processes for semiconductor production.

The project QuaST (Quantum-enabling Services und Tools) is developing software tools which will considerably simplify user access to quantum computers. The objective is to simplify previous highly specialised programming methodologies to the point that programmers will no longer require special knowledge of quantum computing. Six partners are collaborating in the project. Infineon is providing concrete application examples from the global supply chain.

Finally, the QuBRA project (Quantum methods and Benchmarks for Resource Allocation) is developing algorithms and benchmarking to determine the practically viable benefit of quantum computers in comparison to classic approaches, for example in machine learning. Among other things this will help decide when the use of quantum computers is preferable and when the use of classical computers is more practical.

"Infineon sees quantum technologies as a major opportunity in global competition, since they constitute a completely novel development," says Reinhard Ploss, CEO of Infineon. "We are still a long way from deciding which technological path will make the fastest progress possible and which applications will be successfully handled by quantum computers. Infineon is therefore conducting research on a variety of approaches. By participating in the new projects we will widen our footprint along the entire quantum technology value chain, from hardware and software to industrial production and even application. The close cooperation in these projects will accelerate the pace of development and will establish the basis for a successful future."

Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
Advancing tuneable InP lasers on a heterogeneous platform
P-GaN gate HEMTs have record threshold voltage
Guerrilla RF releases GaN power amplifier dice
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: