Loading...
News Article

UCLA team makes bioelectronic membranes from MoS2

News

2D compound semionductor could lead to new classes of wearable devices, diagnostic sensors and biological-electronic hybrid organisms

UCLA researchers have developed a unique design of ultrathin MoS2 films for highly flexible yet mechanically robust bioelectronic membranes that could pave the way for diagnostic on-skin sensors that fit precisely over the body’s contours and conform to its movements.

Science recently published a paper describing the research co-led by Xiangfeng Duan, professor of chemistry and biochemistry; and Yu Huang, professor and chair of the Materials Science and Engineering Department at the UCLA Samueli School of Engineering.

The ultrathin electronic membranes are made of several layers of atomically thin sheets of the inorganic compound MoS2. Each sheet is only two to three nanometers thick.

The key to maintaining the membrane’s structural integrity while keeping it thin lies in its layered patchwork structure. The layers are not a single continuous sheet but instead are an assemblage of smaller pieces. The layers are loosely connected by nonbonding van der Waals forces. This allows the sheets to independently slide and rotate over one another, creating extraordinary pliability while keeping their electronic functionality intact.

The layered patchwork creates a percolating network of nanochannels, large enough for air and water molecules to pass through them, giving the material its permeability and breathability.

The researchers think that further development of this material could lead to noninvasive electronics for medicine, health care, biology, agriculture and horticulture. The researchers named the material van der Waals thin film, or VDWTF. The picture above shows an artistic representation of a skin transistor made from van der Waals thin films.

“Conceptually, the membrane is like a much-thinner version of kitchen cling film, with excellent semiconducting electronic functionality and unusual stretchability that naturally adapts to soft biological tissues with highly conformal interfaces,” Duan said. “It could open up a diverse range of powerful sensing and signaling applications. For example, wearable health-monitoring devices built with this material can accurately track electrophysiological signals at the organism level or down to the level of individual cells.”

The researchers created several demonstrations using the thin films, including a transistor that sat on top of a succulent plant’s leaf, whose abundant electrolytes were used to create the electronic circuit. They also created a similar transistor for human skin that used electrolytes-present skin cells to complete the circuit. In addition, the team developed an electrocardiogram that uses small circles of the film placed on a person’s right and left forearm and could detect their blinking during meditation.

“Our proof-of-concept demonstrations using the van der Waals thin film really just hint at the myriad possibilities for this new material,” Huang said. “The membrane could serve as the connection for human-machine interfaces, enhanced robotics and artificial intelligence-enabled technologies that connect directly. This could open a pathway to synthetic electronic-cellular hybrids — cyborg-like living organisms with electronic enhancements.”

REF

'Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes'; Science 24 Feb 2022

Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
Advancing tuneable InP lasers on a heterogeneous platform
P-GaN gate HEMTs have record threshold voltage
Guerrilla RF releases GaN power amplifier dice
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: