A new source of GaN-InGaN LED performance limitation?
Researchers point the finger at inherent background electron concentration
Scientists from Lakehead University and the epitaxy company MEAglow, both in Canada, have published a paper that highlights what they believe is a previously unidentified source of performance limitation in GaN-InGaN LED devices.
While most studies focus on output saturation known as 'current droop' from InGaN layer effects, the researchers show a similar influence from p-type GaN's inherent background electron concentration. The results were published online last week in the journal Solid-State Electronics.
They investigated p-GaN material to confirm that, even though the material had an excess of holes, the background electrons were indeed present and were influencing the charge flow across device electrodes. This current does not cross LED heterojunctions but rather drifts toward its proximal device electrode, causing a source of heating while providing no carriers for light emitting recombination.
The effects of this current were then explored in an LED configuration, whose output showed weak efficiency at very low biases in addition to that from current droop.
While the shortcoming under small currents has previously been attributed to electron tunneling across the junction, the researchers propose that another cause could be the background electrons inside p-GaN.
The full paper 'GaN-InGaN LED efficiency reduction from parasitic electron currents in p-GaN' by Greg Togtema, et al was published online last week in Solid-State Electronics Volume 103, January 2015.
Secure Your Hydrogen Supply
A study supply of high-purity hydrogen is critical to semiconductor fabrication. Supply chain interruptions are challenging manufacturers, leading to production slowdowns and stoppages. On-site hydrogen generation offers a scalable alternative for new and existing fabs, freeing the operator from dependence on delivered gas.Plant managers understand the critical role that hydrogen plays in semiconductor fabrication. That important job includes crystal growth, carrier gas, wafer annealing, and in the emerging Extreme UV Lithography (EUV) that will enable new generations of devices. As the vast need for semiconductors grows across all sectors of world economies, so does the need for high-purity hydrogen.
Take control with Nel on-site hydrogen generation.
Read more