Info
Info
News Article

Number Of SiC Patents Don't Tally With Revenues

Although Japan holds 72% of patents related to silicon carbide wafer growth, the US holds a larger proportion in terms of revenue


Despite a cumulative raw wafer and epi wafer market that won’t exceed $80 million in 2012, the corpus of related patents of SiC growth comprises over 1772 patent families and more than 350 companies since 1928. Eighty-three percent of patents relate to a method while 17% of them claim an apparatus.

This is according to Yole Développement'slatest report, "SiC Patent Analysis single crystal, wafer and epiwafer manufacturing".






Since 1978, the main technique used to grow bulk single-crystals of SiC is PVT (Physical Vapour Transport ). The seeded sublimation method represents 36% of published patents. The PVT technique mostly deals with the hexagonal polytype nH-SiC (n=2,4,6).

An alternative route to growing SiC is Liquid Phase Epitaxy (LPE), with early efforts dating back to 1961. This technique enables the grow of crystals with low dislocation densities at relatively low temperatures , which is particularly attractive for cubic polytype 3C-SiC.




About 37% of patents relate to a Chemical Vapour Deposition technique (CVD) which is almost exclusively used today to manufacture SiC epiwafers. Molecular Beam Epitaxy (MBE) is only mentioned in 1% of patents. The polytype (hexagonal or cubic) is explicitly claimed in 15% of patents. Numerous strategies to reduce crystal defects (micropipes, carrots …) and make semi-insulating material are proposed in 23% and 10% of patents respectively.


 

Roughly 350 applicants are involved in SiC crystal/epiwafer technology. They are mainly located in Japan, which holds 72% of patents and the US, which possesses 12% of patents. The five major applicants based on their patents number are Denso, Sumitomo, Nippon Steel, Bridgestone and Toyota. They represent about 35% of studied patents.

US firm Cree occupies 6th position. This balance is totally uncorrelated from the reality of the market where 75% of the SiC wafer business is generated by US-based companies, namely Cree, II-VI or Dow Corning.

Japan is only responsible for 5% of the revenues (at least before Rohm acquired SiCrystal). Similar observations are seen in Europe and Asia (not including Japan) where the number of patents/revenues ratio is very weak at the moment.



Although Japan is currently leading the IP in SiC technology, Korea and China are catching up.


Japan has become increasingly involved in SiC technology since the 1980’s. The United States was the earliest player and is still active. In contrast, only 3 Japanese companies are commercially active in SiC material:. These are Showa Denko (epiwafer), Bridgestone (wafer) and Nippon Steel (wafer and epiwafer).




During the last five years, with the establishment of some new companies, China and Korea have emerged as new players. Chinese firms include Epiworld, TianYue, TYSTC and Tankeblue. Korean firm SKC is also another contender. However, the market share held by these companies is currently very low.





It may seem obvious that IP considerations do not create a differentiating factor for success in the SiC substrate business.

Cree is leading this industry with about half the global market share, and has an excellent reputation in terms of quality, diameter and reproducibility. However, Cree does not own the widest patent portfolio. Thus, know-how and patent numbers do not seem to correlate.


 

The only field where number of patents and business size appears to be more balanced is in Semi-Insulating (S.I.) SiC technology where both Cree (Vanadium-free) and II-VI (Vanadium-doped) have extensively patented their respective developments.






The barriers to the entry in the SiC substrate world are very high. Today, state-of-the-art technology deals with 6" diameter wafers with very low dislocation densities. According to Yole, only Cree seems able to offer such a product today.

But why is this the case?




Firstly, Cree has been widely funded by DoD, DoE, DARPA and Navy contracts during the last 20 years, meaning the US firm has had a large advantage over its competitors. Cree has been able to invest a lot of time and money in R&D and improve the technology for both LED and Power Electronics.

So mastering SiC growth is a combination of money and development time, that cannot be compressed. Also, cross-fertilisation between its LED and Power businesses have allowed Cree to benefit from LED mass manufacturing, which is probably less stringent than power at wafer level, to fuel the power electronics side.


 

Apart from receiving funding to develop the technology, the only options to enter quickly in the SiC substrate battlefield appears to be through M&A (Merger & Acquisition) of an existing activity or to buy a license and related know-how, paying royalties in return.

But who is for sale?

Virtually nobody is at this current time. Beyond the top five SiC substrate leaders, Yole doesn’t see a clear positioning of companies who may want to participate in a sale or merger of their business.


Ultimately, new developments based on LPE (Liquid Phase Epitaxy), made by Toyota, Denso or Sumitomo,  as well as 3C-SiC (Cubic) which may disrupt the current PVT domination, could be the deciding factor.



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event