Loading...
News Article

Fast method for printing nanolasers from perovskites

News

An international research team has developed a new method of synthesising miniature light sources. It is based on a special laser which produces millions of nanolasers from a perovskite film in a few minutes. Such lasers look like small disks, work at room temperature and have an tunable emission wavelength from 550 to 800 nm. The high speed and good reproducibility of this method make it promising for the industrial production of single nanolasers as well as whole chains. The study was published in ACS Nano.

Recently, scientists have been actively working on miniature light sources or nanolasers. It is required, for example, to produce optical chips that could process information in next-gen devices. However, making such light sources is not that easy due to unstable materials, as well as the complex and expensive fabrication methods, which are difficult to control and adjust for industrial production.

Scientists from ITMO University, the Far Eastern Federal University, Texas University at Dallas, and the Australian National University have found a new way to solve this problem. They have developed a method allowing for creation of millions of nanolasers from an optically active halide perovskites in a few minutes.

The fabrication starts when a half of micron thick perovskite film is deposited on a glass substrate. Then, it is irradiated with a laser beam with a special annular pulse intensity distribution: weak in the center and stronger at the edges. As a result, a set of perovskite disks is obtained from the film. These are the nanolasers: they are located on the substrate at an equal distance from each other, and have the same size and emission characteristics.

"Such perovskite disks, unlike regular film, act as so-called 'whispering gallery' resonators. The spontaneously emitted light in them can be traped, enhanced, and converted to coherent light. It is very important that we were able to create nanolasers that operate at the same wavelength. Their rough surface supress all the modes, except one, for which the lasing conditions are most suitable. At the same time, we can control the radiation wavelength by varying the composition of the film," says Sergey Makarov, the head of the Laboratory for Hybrid Nanophotonics and Optoelectronics at ITMO University.

Previously, scientists from ITMO University have proposed a chemical method for creating perovskite nanolasers. It helped to speed up the process but did not give enough control over the synthesis. Therefore, among the main advantages of this new method are not only high speed but also good 'controllability'. This makes it promising for industrial adaptation. Researchers currently plan to optimize the fabrication of nanolasers for industrial production and integrate nanolasers with waveguides to create optical chips.

Improving annealing conditions for GaN MOSFETs
NREL publishes Si-perovskite tandem analysis
Indichip Semis to build $1.4b SiC fab
Printing high-speed modulators on SOI
Sivers signs CHIPS Act contracts
Photon IP raises €4.75m for advanced PICs
Imec makes breakthrough with GaAs lasers on silicon
VueReal appoints VP of semiconductor engineering
Plessey and Meta announce brightest red microLED display
Laser Thermal wins contract from Louisiana Tech University
Riber gets repeat US order for MBE 412 cluster
Na‑flux method improves GaN device performance
X-Rite introduces booth for LED-based colour evaluation
Quantum Science signs QD technology deal
Penn State makes breakthrough in photonic switching
Rohm develops 1kW class IR laser diode
US ITC says Innoscience infringed EPC GaN patent
Aledia's microLED line is ready to roll
China adds more US firms to export control List
Imec shows outdoor stability of perovskite modules
Chiplets set to transform electronics, says IDTechEx
Riber secures production system order in Europe
FBH to present novel lasers at Photonics West
US DOE awards $179m for fundamental chip research
Polar Light Tech makes microLED breakthrough
Precursor modulation enhances DUV LED efficiency
US Government to probe Chinese chip trade practices
EPC Space achieves JANS MIL-PRF-19500 certification
HKUST team develops DUV microLED chips for lithography
Porotech partners with Foxconn on microLEDs
Scientists make laser-based artificial neuron
NS Nanotech shows benefit of far-UVC in ambulances
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: